: WATER WORKS

CARMANSVILLE
NEW YORKCIT'

$$
\begin{aligned}
& \text { REVIEW } \\
& \text { OFTHE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HIGH SERVIGE }
\end{aligned}
$$

Coetement with which the engineer has to operate furnishes a more diversified and inlevestring sutfiect of studly chan waler The necissily which it satisfies is lest measured by it abundance. Set atimdant as it is and Moughil has beer the sutjecity counties experiments, herhafis metement more completely. tests the skill of the cugineer and causes him to dread icflicas ir, than water. Iravily causes il to sect tho lowest point of the carts surface and if we attempt to arrest the progress of even the most gentle stream, we are rewarded onely by seeing the water riseigathering strength every ivetaut and ever seeking the least flaw or crevice mall our wort io sup from before our eyes. Truthful workmonshife fut increas \& the distrualion.

It is only in the works of the orealion where the meet
perfect adafitation of laws with reference to matter occurs, and. where there is the grandest system of compensation, that the actimon of water does no l involve che ultimate devtriclion of what ever impedes its course.

Kier thebes, man may soconstruct his works if he make a faithful wee of the advantages that are given tine, as Comake then sufficiently enduring to meet the necessity which that were in landed to validly.

We are ever ling ing for change and it is, furhapis, well that art can firduce little which shall long ovitlast the mind which conceived it:

Upon the subfield of wulerwortes meek has then vac and written. "Sletioug" fuel of interest, nothing bul a brief stelae of some of the mire prominent steles of their frag restis admissible ie this place.

She wants of man in the prinuliare agee were few He wis satisfied to quench his thirst from acclear firing or monelaine.
stream by the side of which he erected his single habita lion and lived with lilelobexcile his envy or arouse his ambition.

But as fufeulation increased and conmuncles were selablisked, necessity compelled other meansof suftulying wa dir. It mas then that the first Life was later, resulting - in structures which, though reade, were saliifaclory for the line.

The first class of waterworks would, natural lay, be that in which the mater was latin from a source suffi: cienty elevated to admit af it bering induc lid through canals or other conduit. to its alletinalione. by the cation of givinly Of this class were the soatervorts af India. and if me are le jiedlge by the evidences which elicfecit in suck profusion, that the traveler, its is said, is astoisidhed on beholding them; that country was if not first α mong the first tocidept extrusive artificial eystenes to
supply ils inhabitants with pure wales.
The second class of waterworks, conceded clevaled reservions, into which the water was forced or raised of artificial means from a source les elevated. Such have oily.. ben used, where the difficulty of offaining a sufflly ty the first. means, rendered chat system to expensive.

It affecers that the final inachines for raising water were invented in Egufl, under the reign of the ptolemies. The trim rifles of their conduction, were, in many respect, to similar to some of those in use, at the present day, as to lead many to suffice that but little frogrees has been made since. But this discour. aging view vanish hes whe weiconsider that those frrincifles were elemuilainy, and chat probably ages were necessary for thairden velupenment, perhafis as long a hive elafesed, as that which intervened from their invention to the invention eff the steament gimme, and its afiflication to raving water, which tres eoneparalively recent and which is certainly a grand stride in ace
vance of the hand swapeand treadmill syalims of those lines, while in style of finish and emootteness of action, our madives are greatly sufessior.

Such invention only are made by a fuefle as their nesessities demand, and the low level lands of Bayfut, fora great part of the year without rain, compelled the fuofue wi give their attention to devising means for ingation.

Of the more modern works those of France and S/lain furnish examples of both claver.

Still later the English people limed their allention in This direction and in the struggle, which vas necessary in surmometing natural obstacles, many their fest engineer were brought sol.

Lastly many of thecities of the linited Slates, have bean compelled to erect walerworter to ruffly the ralidily increases. ing demand. efmong these are the walerviovts of b hieing and of Philadelfthid which are "high sevres:" I hose of Philadel
phia (the Fairmonut worb) tahe their water from the Scuythill Hiver and it is raised, intodistribuling reserviors, by fumps driven by turfine watler wheels.

The broton Watervertes supplying New Lioth bily is an exainple of Low eervice works. A he water is conducted tram Groton bal ley throigh a trich aquedeet over a distance of about forly miles to they cily, erossing the Hoarlaene Fiven ufone a thine arch bridge, at in elcualione, a hove low lide, of 120 feet and erisequalty sufiflies all fortions of the cily having a les elevation She highist fortionst the istand has ane cle vation 2vingut As the higher furtions are, mfidlly becoming foppulated. it has hecome neceseary to construct high eervice waterworks. The ofied of this thesis is to review their design and firog rees of eontrinction. - Ahey are denominated the thigh Sernce Garmaneirill waler. worte.

GENERAL DESCRIPTION

Whe high urvic malerworthi al bammanville" is a branck of che fodone waterturites of which Mr. AlM. - date.
dheir conutruction was commenced in the bfring of 1866 under ene
 en the eadtide of the illand at the end af Heipliteriolge. Ahy consictioy: Reservoir. Shus is situided on the high growed tediven. Kuigel and deuet at enences and the hundred seventy second and one humelred anol suenty fourth Strecti:

At is to be ofearth envelofing an emboukment of clay findalle: the bollinn of the reservir to have an elevtion of 206 fect alvoe Cow tick mither. laun tiver, to nuve maximunn ideftit, of 16 feet of watern ands ar be 270 feel: squase at the fort of the interion ilope artuik is is feet hornizontal eot fort verticel. In the midille of the eact side is to he che.
influent Gure House. At is Chrrugh this that che valer fiasies nillo the menvins

Estuent Gate House. This istrife siluated in the middle of the sveet enelantment and through it the wreter is laten sut for distritulione.
The fint mamed gate house is to communicale with broton toreedect by meaus of a sewer for the fuesfure of carging off surfilus water ind for draining the recevoir sthen regruived.

She capacily of the reservir is to be 10.794178 palline and is to supfly all flarls of the cily having = levalions he hieen 120 and 210 fuet abore low tide.
Tank Tower Sthis is to be duill of sline and iron. Al is to Aland near ithe northeast comer of the resetvor, it fondalion having anelevalion of. 205 feet. Wbore low tide. It is to neffert a wrought ivore tank 2 affeel in defith and $216^{\prime \prime}$ diameler. She tallome of the lank iolo have an el valiine of 316 feet above Cowlide. Maxinuune deftt of water in the tanh is lo be 20 feet giving a ca/cacity of 49.368 gallond Frame the tank well frase 6 inch cast irone fifke torminating at o fonvtain ive ite cevler of the reservir. She tower will have a lootave at an ileination of 360 feet abare low lide.

Arm the lant water is to be laten to iuffley all chal fortion of che cily, consisting of aboul 15 , acres, having an elevation of more chice 210 feet, the highert foint bing 21isfeet.
Engine and Boiler Houses. These are to stand at the end of thieh miridge. Ahyy. will be of stone with slate covered rafing. Thedinneusions are to be suck as to accommudale lwio firmfing engines.
Pumping Engines. At here are to be hos dired ading pumping ongines eade capatle of raving 2100000 gallones in 10 hours, for the che fiurfase of sufflyying the resinvir and lawh. Sut one howeres is to be twilt at freesut and that is to have an air funce andinaler fimenfe for euplying the traiess combined.

A he water for sufflyying tho hemufes is te to laken frome Grodion Apriduct near the gate house at west end af lifig teridye. Inclined Planc. Shere is to be an inclined flame evecelid with its lewer ende. divedty in formel of a coal shed, on a duck ly the miver dhe ufteriend of the inclived flame is lo he at the entrance to ithe bisiler romm. Ito -tfeet is in eluntéfuel for che furnacer.

DESCRIPTION OF PARTS

Rescruoir.
Bed of Poundacion. Shis is frefeared by remerning. downe li solid ront. the rect is there blasled auray lill a suntace is found free from fidsura, when it ice ivat hed alearn and a riclge of concrele taid erfone it exlucling gruete armwerd the reservion aned. ils axis curvesfounds with the midelle live of the pucldle wall at the eque haritlet Ite orvss sedione is rectanguliar ifset ine deftit by efeet in thichness. dle flicd is to trievent water, that may ahavece lo tienkle heneath tho theddele, foreever..: fing $l o$ thi exterion portion of the enchank ineul.

 divn and each layer is weld ahofefed thrrugh wath the iflade es as to emite thene therrughly. Srem the fase ils the ibotton of the meserivir the fudelle has a chidt. mer of Nfeet: Arme-that hoint-tacke lofl, a herphtaflefeet che secled have ruch a hatler as to mate che lofe Nofet ikich, It lote si a ieng lille shove the free surbace of the unter in the veservesirat it mociumuiv haig if:
 lowone free from elones larger than endinumeler avel forme verpetable muveli. It is hiele simpllaneonely wivt the freldle and sis layens of th pave chickinen each lay being well mammed. At ihues eurver as a monlel for che hudelle The interior of che tant has a slafee of is hurisonctal lo verticial. Alis firveliclid ty a slofe urall of mbtle masury is thich and laud in hydinuerie cument. The uffur edge of thes clufle unall is level with the fren tughan of the arales in the reieverin

The exterion thes of the menbantument is 1.75 horizontal tolventifiab
 slofe to uffuredge of immen slafe is 11 fleet. hext the lafo of the itates sumll is a trencett 2 -feet wide by efeet in alefch avel filled wille menera isurve as a fomelalion for
 foet in height ummonnail by a cutgrovile eoplaing fordickich by ofet

and its ufflon verface level with che toltom of the aifing. steps. The grnvel walt is reaiched by a flight of eling ellef coranitisis in number.

Effluent Gate House. This rente ufon a roch finndation frefiaved \&y arvering the rock over with concrete to a luel with che forton of the resenvir.

The dimencions are, flan 96 fuet by 24 faet and height a hove bollom of reeenvir 20 feet. A he extinior wall are of govis 16 riches thick. Interiomwale ofbrick 12 indhes thich. In the end toward the anter of the revervir arie hor arched walerchambers each ofeet 6 mackes by sfeer in plem. These cham hons. have in their sede wall, direally offersite to eack ther, twer verlionl groven cut 4 in by 4 ini. in orossedion for the reaption of thep planks in eases ap necest
 inclid with the fomser hy a fiasage way offut high Ift vide tho botcme of the flateage way is raiced if out above the hallom of the neevvir tor the
 ficen, one sin eath ehrunher conveding with a speat dianceton wuen that chy

 irm fife whose bettone is me fort above the divown of the chave ker loppremer my dint which may have gotstin to che dioub ber from heing convegeditita the fifue. Stif iifes frase, then, thrangle a esingle large chaveluer itfertys fut in flam. There they are pravided with gates or stap anch oferaled by ...irt able contrivacicis when it is requine to aten or dave the cinn nenucecion. Dhey arealeo each promicled with a kind tifue envereling thoue witk the hefore mentioned ever fifte. Athe "ififus havereade a stap cock to he kiftelaved moliuarily. The gatedimuber is fittiol with an inne ofou work prillage or floov, for men to stand upion ivken working the gecie, At is reached Ay itifu both abre and below Back of chi chauler is a recies isfeet square in flean and covered with a trich and for eufflowt sing the en bankment and fuddlle which fawoverit.

On each sideof ethe gate houce sois a wing walle having iteface'n promeng alion of ite face of the gale house, itthe having the eane slafue as che enbounhment and enffiorling on embankment at ing le ampas to the

stepped at the bach to form more furfed fond with the lint and as incurill against filtration which vel dectroge the cavort.
The stone worth is rock faced, laid in hydraulic cement as uncoursed onbble. finite to be well forieled and finitfaces to be hammer dressed es as lay. is fan incl jiriet.

All stracts within the gate house, excefet those mentioned above, are to be filled with concrete.
Who top of the gate house is lo te eurmonnled af a granite expiring fool thick one firgiecting 4 inches beyond the faces of the wall allarmud except: the side next the embank nest where it is to bi plash." There are to beofeuinge through the coping wert the ohavebers sichire its edges will be flush witt the chamber walls.
Influent Give louse. This to be constructed the same as the other, aces regards maferial and work manshife. Its arrangement deffice, only, in the following pharliculare, from that of the fernery. Stere is to be hut one walirntiu-

 of themater min the reservoin. Within the gate houer and at the backendaf this ofrining is a well conemmicating wich a s foat temer throng ti which the. surples water is carried away to the Grolone otpuedud. Watereulers the waler chamber through two 20 inch mavies, the boltane of there mains being isfuet above the level af the bellon of the reeer wrins Shese fiftes have beleimonets and at the end, they are sft diameetir, thicurve of etein eection conver in ward and having a modiasty 25 fuet
Cerme vhe bollow of the maler chandies a ctovel fool cemer feacers out chmong the mifaciknent fomving a finalion ivilte the eewer mentiondel aboe.
 The flan of the gatc house is 2 feet by erfiet ".

Tank Tower
 Foundation. Dhe fomendalion conciat of a mall of qnienmarmery ffeet siedies thice and iffet tivclus hish. She whole of the sface wekin the wince is filled sith concrele lo a levelwith the lofe of the watl.

Lower sting. This to be aclaponaline flan and es feet rulaicle dizuetors 22 fulisuindon high. Walle to be tuilt of dark Gunicey groveite and hest hew fort is laind Sucir. Enmuite to be outide and to have heds of eevinchen the vee of the
 full thrrughout and to have the hede dreased seas to fay invieote chichit the thine to have agod gnarny face free frove driet nardes. The graiite and quew to be well hasided ivilte heccilens if feet 6 indued long. She

 of che erfing is to be 2 sfeer 6 incher a bove the fenitakion.

 out of lay to gan anch and rise of the tove to be 16 vinucher The hight of the dafl ofe io tho bele-curse suder the tauk roves io te be is foet above fondalion. Afrm the hottenn of the helterurce le the tate of The cofling on which veet the touth and the wates of the lank rover io to te sfeet:
Tant Reom. Dhistle he oclagonal inflan and 28 feet 4 incher from aut houl of fearallel wall. Wall isethich and of granite whole heiglet of rom 29 fied Shun are to be 16 windous ii the tauksonn.

Reof the nof is to be trfeet high and of ferm shown in plan, to have asive eorniel. around the finet anet second sections and one top, to have the augles cevered svith coplifuer. It is to the slated, the slates fivening undenthe affue at the auglis.
 uff isinatue muder the battome of the laskorme wall. She frgme wart is to be of the bed while fuice.
Lodout Beom, bhemsan the sections of the rerf is to te the lurakout sodic with ill fhorn sitfiet scinclus a bove the foumalation

BrickLiming Arrme the foundateon to the copinigender the tautroom virll be atrich hiving s rinches thich, and with an air sface, betiven it and the sonesof the wale, of 4 rincters.
Dolil height of the towen a houe frundalen is ffeer bindue.
stories dherieterion. If the lower helow the tankromin vill Golesided inte istonies "fted and inch between jonile. She floms are to reeton wrought ivres I thafed heaus whick hase through the brich hiving' smetes. Aach etory isfeet inch betwiven fivies staind. Shee areble ofirin, cust triad and wrought frave enort and in eack istiry to wind from me vide arrand to the offovite sede, or occuftying si vides, the latiding re eachifleor to he vertically ver chat of the frecending.
 It is to be made of hest mrought irrin flates and welts each so of rieche etioh, the welter sinches wide
dhe edges are to be flaved war to form a dace fiveling foint and the finite lo bi druble rivetiel with siveto $\%$ inch indianceter and to be so plaeed thai any cturee adjacent rivets of the two movis shall be at a alistance of part if esindes frome een-

All f fifes are fastened to the vales af the lower by irvictavis scarred by bills which are anchored to the walls

Eingine House
Forndarion. Prefiared Ag leveling off iturrch.
substructure. She north end wall is to be sfuel onchio thich at iti base and stepfad to 4s" thich at life. Sonthend revall is to be sfut incle thick at the hollonev, of the sides and ufut binches abore bribes houservof. In the midelle thece wall are to ofedt inches thick from bottom to tofe. Dherrear wall is to be iful-sinctio thick throughout and the frontinall "fiet inicle at lofe, "fut at bollom." These walls ave of queir.
The cofvings at the tofe are to be af granite.
The foundation for the frumpe ase lo be of hammerdresed granite.
There are to be two trich walls to each engine extending frome the batton to the gimers sufferling the Steane aplinders of tee engines. Dhey are to te, in the mide dle "ffet thich from the bottonn to the lofe and at the cottom of the tieled "feet chick, slefifed to 2 fut ithich al tof
Ithe fottorice of the tacenvent is to he covered with gravel conorete fort diech
 and the lof of ite eofling on whick they rett to have the same ilhvecion the thamie
rovie flour, viz: 185 feet-10 ivetios above bow tide. Ithe wells are to tuill of pravialaide
 i inches fetiven il-and the stice.
 covered with slate laid s mathe to the wentter. the hifu aude morgen to be conered will 14 ox. cuffiorflate

The whole is to he frivitied in the beet
Pumping Eingines
sream cylindem. She sliame agtiveler, of the engine to be erreted firct. is bo be of cact irve. It is te be double thill. The lower, head lo be cast in and to have the elaftuing tox hated to it with wrought irme bote fiascing ttrongh flauges. Dhere is to be a vabue seat at each ende having avexhanct and induationfuot oastive Eth ixhand forte afen into the anular face behoen the inverande outer shellof the aglinder. She uffier head is to be ecured'ty do lend flamper. values and valuechests Dhere vill the hwo palve aheal, oue at ead end of the aydiuder sensed to it hy belle. Dhey nellthe east in me fied logetter with a slante. Hastage way monneling the two.and allo to the lowermile de eact the value -
shen-suffing tive. There willthe acover holied nete each valve chell D he cover-to Le finished on the outide.

Where mill he a valve in eack chutof the tivd weunely denonmaliol Divalue. Whay will be oonneded by tare rads of wroug he iron paseng through the sleaw. channel way and recured to the walves by suts: dhey vill to ferated bytar valve stums secured to the lowersmeve and fasting downe thrmgh the thapfing bones, to the walve lever.
Steam'siston: She eleam fiston is to he cast donble thell and trouply ribled. It is to he facked with rings hefut sung ly stel efrings and:heldein hlace by a cadt irme follower plate secured by seveur tall. she hieb hored lorecive. the end of the fislon sal.
Condenser Lunderneath the elean ayflinder and at side othnuecte the enalve chect is the conslenser, adoed anst inon vesect witte a loneciphoricel lif anden. invivicaling sivith the anmilar sface tiv the telean oflineler hy a sast ion fifee

the briok nolle mentioned in the deveriptainegf the engive house: At he lower chauber has a rubler value clining agaivet a prillage Sream Piston Pad. She sleam fuiton rod is of het wroupt irne, ite ufifer end turned bo filt-ter hubof the fielon. At is ountid, as far as it ulere the small hump, avith confurilion. Ds loverend seoured to the small huulf fieton ar will beduraribed precendy. :
Small pump cylinder. Dhis is to be of cadt irme, hived with armponlion. It u/purdian bee is cact on and is merely an ei largenent af itrilf. fitlide with a flange biw heiki is soureit the head of cast irm. Dhe head isfilled with a sheffing hax having comftration gland through erhich the sleane fistound fa sese at the sidle If the chanber, is cast inourle fillal with a flauge to which is secured the nid. of the chamber of the endeuser.
dhe biver ence of the ughinaler has a malerokaveler oeel one $4, t$ theach a...l
 is holeal the firl velve chamher and he the octur the haden ere diavien.

- Ohe moterdiamber has in it folltome etapffing bir opeastion दtaraugh whick

lower end of the slean fuiloges end and itis aled hirned on the outuide to fit the swall furupf fielos
 and flange, che hudshored tofit che end If the kollow fistan. She lounarone is fust on fivet meling againet a shoulaler tu the lwelowfictors. At has the endel vith
 leaving a phace for the fistur fiaeking. Sthe ende of tho two fuitou rade are tofit topetter by a tring sted key having a rectangular aros section chest valve. She check inalve fur the emall fumpe is what isoaled tho alvaket dut. tralue. It clowesufurn huro arreclar ïd wred seati: She uffurend of itrchamkn. has a flampe with a herisontal face. She valve ofend ufenard. Air chamiber. Dhis is a cy lindrical fifle having uffenend heveiftherian A ti low er end is flanged and bolted to the flange of the chite ealve chander. On rne side of the airchamher is catt a flarged norele, to which is holand the fifle laanking to the tover lavh. Dhe aindtaneber resti ufon the the valve
 ty the abrie moulioned frich aveles.

Forvatve andichamber. She frotevalm is frecisely like the check walve she walve chauber rente ufon an iron beam suffiortiod lite the others. the lower end if the chaveter has a cast irgn flauge witt the flave af it face vertical. comal valve chamber. Dhis is bolidel to the fort valve chacuher, at ith uffuer mele iscast to a fife coming from the uffuer chancer of the marie; fump. oft it lofi is a head bolled to flauge on the chander sthe head is frovided vith a stuffing fox thrrug which feases the sumical valve rod. The head uffphore a cast irme anct fiece having in it croinn a suct and the malve sod writh a ecrev cut on it flases througtthe met. On tofe of the valverad is a hand whiel for working the walve. She valve is evvical and ilt-bject. is to shut off the sunter frome the cnale funesp when vecuary. Main Pumip Cylinder. The manifunuf, oylinder es of cast iron. Do ilveuffur ahauber is secured the head. Sthe head is provided arith a flenger staffing bor. On offrasite sicles of the ufeper ahauker is casta flarged nosile. A ir chamber, Ahis a cy lividrical vessel with a hemiespherical head ancel having ils lowerend tolted to a etroing section of horivontal fighe dhis isall uthtiveled by twe string beanes resting ufter the hosith invele. Onesend of the.
 to the faife leading to the reservair:
Cheek Valveandchamiben. Dhe aheot velve is a rabler meve and cloes agaiest a eatisim grillage seat. Ahe dhanker is ofort iron, restangular in eretive
 Io that dither flauge of the uffier chaneler of the fumute. It aferhar cast toita fifk with a vertionl axis. selt this fifte and the funte farrel sereflargear at: Their lower end, flauges having. Sactonse and to then is holted the lomerediamuer of the fump. Dhis lover aham her is reolangutar in ereas sicteon. Hes position i: horizontal, with rie end resting ufton a maied hed fiece which staicherfore. the yravite fonndation. Hhe atter und of thes chancher is flanged. As it is belt ed the fool walve chaneter.
Poot vaive Chamber. She axis of tha is an irrenelar, veverved eurve having the fort value seat in a horiserital posilione at the finetion of the two surves St he ohave ber has onst tospuffortivg fices and rest uftom the gravite fonsolation. It Ithen serves as a sufifort to ind of the lower chamber of thi fump, lo ithek et is

which is bolted; both. to the uepfionts and to the gravite fourdeleine. dhe fort valive draiuber has, abve the salve, a "manthole" ctrough which togel at the valve when measenry.
poot Valve. Shis consiali of two circular iron flates, concuritrio vilte each eother and sliffened by flinigen, On the undervide of the flates, sheet of rubberwhich eet down to the seats and make a nater tighty nist and urve to deaden the klow when the walve comes down. Dhe valve close over correcfunding annular orifeiernil The salve seat. Dhe edger of these orifies are ronded to fuciecta te the piaceaige of water and to frevent antling the rubber.
Main Pump. Plunger: Dhis is a hollow cyflinder hiving ito upfur end bored tojitcts lower end of the hollowfidton mentionel lefore, dhe ontiale of the afference is tirnem to reeirel the erowhead hub. Athe whole is fastived tigetter by a etiong ital tay vich it ectionretangular. Dhe lower end goring doum inte che fump ayfinder isclaed; its head having oast to it mithin the of hinaler and itrongly nibled, a hiublurhiek is bored to fit the tuctetrod. She hieket rod is af wroughtimon aind fast eved to the hub witt a strang ithel tey. At is hamed the whole leugit aned has fitlid le itslowerend the bucket.

Bucket. Shis consiats of a heavy cast inming ond hub with thin wide arme all cact logetur. offollower is bolted to the under side to secure a lignumvital facking The edge of the ring and uffer end of the hul are proveded avith grover in which are simertid endwood wralre seate for a double heat valie. Sthiswinks
 Cross Head. The have already described the thel. She arms extend in offursite divedian and rectangular in crose section exceft at the ende whichare cylinderical ind filted ridt hearinges for the conmeting rod.
Crank Shafe. She ernuk chaft is of wrought iron. It is editialid under the fume and in the prolongation of its asis. Irmes in two fillow blecks fastaved to. the fondalim and bed plate alleady decoribed, ky meansof trong auAher belts. Sach end projedt out far enough to received a flyiwheel. Fly wheets. Shere are nuo flywhele of equal sime andeweight athe armen af me fly whiel are fiarallel to the corresfindeng arms of the athers due one of thearms of each wheel isfitted a crank fin, er that the whele seve astwer crants with fiarallel armes and of equal lengete: the cominov arisif chice fines is fiavallef with that of the enise kead. Othey recine the lowereude
of the concealing rads. Connecting Rods.
valve Gear. In one end of the crosesheadesis steal fine which slides ul and down ain a grove in a vertical shaft: She shaft Curs in staudarde bolted to the trick vil On its ufferend is a hovel finicion gearnig into a bevel wheel three tines it oh sire fitting to a sock shaft. An arm running out from the sock shafthas mi trend a fin which work in a slot in chi end of the valve levers. The grove in the shaft is of such fore as to give it a rectory motion, ky. means of which motion is communicated to the valves.

Str further particulars refer to the cable of data and to drawnigs.

TABLE OF DATA

Reservoir
Seugt of one side al fort of isiterion shelhe
276 feels inches.
Defict of sualer
ba/cacily

16
10.791178 gellous

Section of E'm bankment.
Interior slofe shorisontal to 2 vertical. Eixterior
widith of texp
11 feel -
Simenvious of paraful wall
2fthy $2 f^{\prime \prime}$
boping of fianaper walls
'foot by sfeel
Elevation of tope of fudde mall above low tide 221 feet

Irealest Defuct of fuatalle

- 32

Dhichues at lofe. \Rightarrow is
"16.feet from lafe

- 10 .
i Baltane

Gomproition of fudde 2 blay liaick Gace Houses.

Dinemeion of plom of influent pate hruse " ". " effluent.. 26×29

Toight opection
Dianceles of mell
3 feel

- eack mever

$$
3 \ldots
$$

Drametts of eack inducteren heifue
20 cicher

Tower
Simueter at base, outsicle
$29 \mathrm{fec}-$
insiale
15 ..
of shaft. "
18 .
onlicle

$$
26 \quad .
$$

Elevation of betlom of lawh reome afreifoudalian I"..
" "topk lower.
155.16 rincles

Serit.
Anlarior dianuler
Qefont 6 inelix

Septe of rank
Shickues of pleate and mell.
Siauration of onver
Defeltaf waler
bafacily
Stlalineight of loiver and tank
pumping Eingive.
Steam Cylinder:
Sidinceler
Seugth of itroke

22 fuct
多 rich.
\%
20 fec
49368 gellow 7.265 .753 Cl.

Piscere Rod
\therefore Diancter
Smget
13 feet 8 sireker

Small Pumen
Siameter of cylinder
i hollow fistin rod 12. .2.
moluetion fiche

Siancter of edwetinc fifhe
7 vieckes
Lengitiof troke
6 feel -
Main Permp
Sianveler of cylinder
I2 necker
Seugete of strake
6 feer
Diameter of inductione suaie
so inches
.. \because educlion
20
Crank sthaft
Dianceter of Shaft
9inalues
Seugeth
sfleet bivelues.
Weight of fly wheel and cravk thaft
29029 l4.
ivinhtofsecifurocking fuart

COMPUTATIONS

Reservoir:
Embankment. In computing the storngtk of the ombankoncel we will find covesid ir the fundelle and then the curbautsuent of earth, uering the following duta.
bompasidion of unddle of clay and iefearte
Weight pexwhic fool of clay (Vboselyy) 120 lb.
"." " ". confact cartle 89 ..
Breauth of base of fudalle
10 feet $=3$
Volune " "', laking forkion footinhigett 234 ciebici flet "Waght .
Depte it highes point-

$$
\begin{aligned}
& 3095 / \mathrm{ld}=w \\
& 3 e \text { leet }=h
\end{aligned}
$$

Blecialion of lofl of fucelle ahove low lide
221.
". "frees curface of arales. \qquad
221..

Defich of revaler

$$
16 . x
$$

Weight of walle fer culice foil

$$
\epsilon 2.4=\mu
$$ Shen we have for the monnent.

Medulus of eafely for overturning $=\frac{15.485 .5}{10678}=$ 14.5 Stor sliffing we nued take che presuere of the weler at the dottone of the reuvir. This is resitid by all the frition pirdenced by that furtion of the finddlle liging above the hatlon of the water. Then we have coefficient of friction for clay(tantive)
" earth 1.19 Saking mean anfficint we have 1.1 Wuight of 16 fil defite of fuaddle from downevard 13429 las. Friclion froduced = $19429 \times 1.1=$ 14172 ed.

Pressure of mater - $\quad \mu x=16 \times 62.4 \mathrm{ik}=$ 998 C60.

Mivelulus of sefely $=\frac{18972}{998}=$ 14. 5
hext take the forlion of confrect earth outaide of the fuedelle and find ite modulues for slifiling.
Weight frodecting fieckirs borfficentof fridion for earth (tankive) 1.19

When /anclione formluacter sllor

Pressure of water sive as before 998

Modulue of cafely $=91105=91$ Dolal recistince toslififing -
modulus of safely
It is muscuseng to calculate the moduled of tafety for the oullide earte againel overturming, as it will slicle bofare livning. The earth withie the enebankmunt need mot be everielered as it is sultfrosed lo teconve salimatred viel evales ard itioffice is lo probtectich funddlefrene wate. Il is ilaetf proticted by the slofe wall. botte from wach and frour slicling sieward whim the enter is drewn out frome the resinvir.
aate Houses. The mly fiorlion of these which have stpains which are not
 The viralerand gate chameber. The fuifus having been sufiected tio lest of soolts tureting presture, fes spuase civch, as they sicstain mithing near chat ainomel of actial presuure are furfecty sufe.

For the fartition walls we will tahe the most mufarorable ne which ithat in the inflinent gale house. We will tate a slice of one fort pite tuggete for ont confulaliore. Shen we trave the following dala.

Height of wall $=\quad t=$
Dhicknes... $=B=$

$$
s^{-} .
$$

". .. trict fucrizgs 2.:
"concretifilling
Deplta of waler
Height of hrich in Slice convidened $=20 \times 2 \times 181 d=4480$ las. (monelyy)

$$
\because \text {. coucrete.. } \because \quad=2013 \times 139 n=4780 .
$$

Dolal weright of slice $\quad=\quad 12260 \ldots \mathrm{~W}$
Bhen formonut ase have momeat of revilence $=\frac{16 L}{2}=\frac{2260}{2} \times 5=90650$

Modulues of safety against avertarning $=\frac{\operatorname{sodsio}}{2045}=11.5$
cte the wall is short and firnely suffurlece at the ende it aicte ar a plale laud and therefore is firfectly safe.

Tower
AIl that will be considered in regard lo the etreupth of the loweritielf. is its liability of tum ming over ane one edge of its face, ty the action of tho wind, of lemming over me the edgeing the base of the taut room by the saver aquacy and the probability of the cuffing beni g tuned by the weight above. it.
Turning of whole Tower. A he surface ufo stich the wind act is equal toile vertical frogedion of itu lowerand roof. Stoploint of application ming te tater of the custer of gravity of the enface. Aten by reference to the dian inge se have the following data: Height of body of lower and tank tone 110 feer ictreragediaureler.. ".
Height of roo above it base US. S- .. thea of vertical firgiection of lower 4060 sonarefeel-- " \qquad roof clad area $203 \quad \because \quad \because=e^{\circ}$ Bidet of lase of lower $4769 \quad \because \quad \because=A$ 29 feet $=6$

Theight of curter of gnavily of mof abereititase $=\frac{485}{3}=16.1$ feet

$$
\text { . . "." "Gody of tower..... }=\frac{140}{2} M=70 \text { " }
$$

Dhen distance from center of gravily of holly of lower to common cueler of pramit : whole distance betwen certer pavitais of fiarte as the areas of the propective of rof is to whole arece. Tence we have distance $=\frac{86.17 \times 1703}{4763}=12.7$ fit Height of center gravity of whole projection above base of tower $-70+12.1=88,7$ fut $=1$ Dolalweight of biver and roff exchesive of tank 1239329 Ch. $=w$
i" lank rome walls

$$
663540=w .
$$

. roof

$$
102.558 \%=w_{0} .
$$

Atrea of vertical fropeclion of tank room

$$
\text { sul ef fect }=A^{\prime}
$$

midete of base of lakt room
29 fee $=4$

- Then for monente we have noment of aveiglet $=W \frac{b}{2}=7233223 \times \frac{29}{2}=104888989$

An so lle pur equare fort proseure
" Дresure $=$ sold $\times A \times l=50 \times$ urcs $\times 28.7=19766$ use
Modulue of eafely $=\frac{104989983}{19766450}=5.4$
of se the per ypuave fort is a garaler presure thou any mind a hich ave have, exerls, there is modauger of thi lower teing lbowe over dperthermure The querghtiof the tan fiell of mator will land ti coreacethe tatilitg

Turming over of the roofand Cank room.
Height of centar pravity of tantorom atore bae oquall $=$ ims feet:

$$
\text { A preaure }=\left(A^{\circ}+A^{\circ}\right) 50 \times 25=15.44 \times 50 \times 2 \times 5=440040
$$

$$
\text { Modulue of safety }=\frac{11 / 154.821}{2200200}=5
$$

The roof canuat blow of as it is tied to the wall af che lauk room sivite s strong wrought inon aies
Stabitity of the coping. Sake that furtion of wall and roof resting on ifoot ins. Suget of cof ing. By looking tete drawing of the tower it will he cean that the cofing, on which slande the tand roume, proints kyond the wall of ethe trover and is unffurted ty bracket seaching down sfut bilous thi tif of the whing othe that a vertione hive chrrugh the crose sidtime of tauch rom will atit centerpraig
 If wall down to the fort of thi trucket we have for that fiotion of che iveright which lies within the face phe wall. 524 C8i=n Shictuesiof malleat tettin of bradest - ufit $=B$

Dher momert of $w=5$ se48 $\times \frac{t}{2}=5.248 \times 24=12 \mathrm{s.95} 5$

$$
\text { " } \quad w^{\prime}=75-42 \times 1=75.42 \times 6=45.25 .2
$$

$$
\text { Modulus }=\frac{125-95-2}{4 s^{-25-2}}=2.8
$$

Shis is in the suffesition that the wall is left free to turse over about the finit at the fort of the brachels. and chat the foriet ure all ferfect. Dhe rorf hovever adt as a tie heam to keti the tofe of thi wall from mevirig. outwaid mating, necesearily, three jointis of rafiare nivdiad of one. the sveight of the raf ales tends to frevent enche afiening of fivints. Hesich the weight of the taut full of merater has not been covecidered. which willaler viv heir ideled to the weigter of the ceting inerease the cebilaty. Bucit is mol safe to defiend uften chat. Beside the detaviaration of the murtar sis the font makes it necessary chat sormetling sheulel be dove to further sovire the orthing. This nighter be cecompleiked hy lies reaoking frine the inmer edge of the coffing to sonve of the flowr heaus bilous.

Beams supporting tank. Shere are five furrught inan "I" shafed beance suffurling ithe lout. © the middle me is as long as mny we will considen thet Whe dislance from center to couten of the beaues is 2.66 feetWright resting ufen the Afan, is a bad unifonvely dictribuled of a volume of urater, $-20 \mathrm{feel} \times 2.56 \times 16 \times 66.4=59.115 \mathrm{lb}=\mathrm{W} \quad$ Span $=16$ feet

" $A=$ area of whole section $=$ 29.75\%...

Dhen from (mensleye mech's) Art $408, S=\frac{w \times c_{2}}{2 I}$. In whick $E=$ strain at alistanee from the nentral hire $=c ; x=$ distance frone cunter of graerily of half of bame io the abuhivint or wall; $I=$ mement of inertice of the seationi it center op gavity Shen (macelag; mechis drt. 265) $I=\frac{1}{12}\left(A, d_{2}^{2}+A_{2} \alpha_{2}^{2}+A_{3} \alpha_{y}^{2}\right)+\frac{1}{4}\left(\frac{\left(A_{1} A_{2}+A_{1} A_{y}+B_{1} A_{2}\right)}{A} \alpha_{5}^{2}=942.85\right.$
 itgand the cuctery the wel.
Dhen distance frome nentorl axis to equler of $A_{1}=\frac{1}{2}\left(d_{1}+c_{3}\right)-h=6.467$
". \quad. $A_{2}=\frac{1}{t}\left(d_{2}+d_{3}\right)+h=8408$

Sutatithting in the value for 8 for ufforflauge $S_{1}=\frac{5.9115 \times 118 \times 6.067}{2 \times 148,58}=8788$ e6s.

$$
S_{2}=\frac{5.31 .5 \times 48 \times 8.408}{8 \times 8.88 .52}=11357
$$

 Saking a mean for each and, nedului for uffier flange $=\frac{88000}{858}=4.9$

$$
\text { "lowen } \quad=\frac{65000}{1135.7}=5.7
$$

Dhe upfur is a lictle to muall Riet as frart of the lirad is lake off by the other beames and as the fean frojects ver at the ends 20"and beard a profurtivat luad which reluives the thain ine the suiddle in a measure, it is trong enoug k.
Tank. Dake me of the riveted jine at the hottone of the rick per conufuling thestrenget. She following are the clata require tin calcuelation
$D=$ diaveler of tank $=21.6$ fat $H=$ deftei af matar $=20$ feet
$t=$ thichner of flate $=$ sts inch $d=$ diancler of rinct $=$ sinch
$c=$ distance be hiven frome center to cunter of rive $\omega=25$ inches.

Then erdivinof flater and velelts are te section of rivets as to ats is
Whin sedivin ure equal the stranght of double rivetid single arelt jonet as :-
that of plate: By ublituting all values in the fommula excefte and poling for c we have $c=5$. Shen we have che fiace fetwen the rivete- If but it in actually fut $18: 15: 15=.65: x=.54$ that of che flate:

Strengete of ifing in leugtt of the plate $=3 \times 56000=13900 \mathrm{ldo}$
 Whis is sutpided to an aclial presure of a 2 doot collumen of water suith a bove
 waighing 8.68 libs $\therefore\left(\frac{2}{2} 12+3\right)$ 2 $48=1020$ lhs. Shis is riestamed by linch in lingets of felate: \therefore Mochelus $=\frac{7220}{1020}=\% 1$

Shis is a safe mudulus and if as some conitend atmerican biviler flate is sufurior to that of otter croutries the marluelus will be still griater

Flom of water.
Aqueduct to Pump cylinder. She following are the data for calculatigy the tor in from the tyuncluat to the midde of the fumpl yyeincter
 ofs the fungp drains nulter fiom the quedinct but tialf the taue the muncer

Yaubie feet fer secureck is 15.60 cubic feelPhis is during the rule elroke of the bucket.
She formulae are oblanued from the st valine of Weisbacten mechanic she number of the article aline will accomifuany the fornuelae.

$$
y_{1}=: .6516 \quad Y_{1}=6516 \frac{y^{2}}{29}=6516 \frac{(1,9)^{2}}{64.4}=
$$

$$
h_{1}=.0371412 \text { feel }
$$

$$
1_{2}=.131 \times .35-x \frac{4^{2}}{28}=.131 \times .35-\times \frac{(x 1 r 0)}{644}=.007206 \mathrm{feel}
$$

 Shat Valve(cArt. 242) $\quad s=\left(1.645-\frac{F}{F}-1\right)^{2}=(1.645-1)^{2}=7.84 \quad h_{6}=7.84 \frac{1.7)^{2}}{644}=22736$ "

$$
h_{7}=.981 \times 5-\frac{(2.8)^{2}}{64^{4}}=\quad .05-984
$$

$$
k_{1}=l_{1}+l_{2}+1_{3}+1_{4}+1_{2}+t_{6}+l_{7}+h_{8}=.6644 \text { fed }=\text { lose of head }
$$

Frome middle of pump to reservoir.
Quantiy raiced by buchit

$$
241.693
$$

29.712

In ufinvard wtroke the first resibuce is for hulf the weter feesing arvind the pleuger

odnount of water fur eeerud $=\frac{6.9500}{2}=3.375 \quad v_{1}=\frac{3.375}{4.66}=.724$ (.dable vpage 444) $3=9.27$

$$
k_{1}=9.24 \frac{(724)^{2}}{64.4}=.07546 \text { feel }
$$

Infiasning from the aylinder through uffeer chamberwe la ke ilt-ad an elthon of 90° for the whore volume. (ctrt 353$) .9=.9457 \sin ^{2} 8+2.047 \sin ^{4} 5$

$$
\therefore S=.945 \cdot 7 \sin ^{2} 45.0+2.047 \sin ^{4} 45^{\circ}=.984 \text { mean velua'ty }=u=2.84 .: 1_{2}=.984 \frac{12.341^{\prime}}{64.4}=. .119 \mathrm{feel}
$$

In passing frem chanber into $20 "$ /upe caseopabruft asulradive.
(ctrt. 326) $\mu_{n}=\mu_{0}\left(1+.102 n+.06\right.$ Yn $\left.^{2}+.046 n^{3}\right), \frac{H^{\prime}}{g}=12=\frac{2.18}{4.66}=.47$

$$
\begin{aligned}
& \therefore \mu_{47}=815-\left(1+.04794+.0148+.004725-1=.87 \therefore s=\left(\frac{1}{97}\right)^{2}-1=.318\right. \\
& \quad z=\text { velocily in } 2.0 \text { "fifie }=\frac{6.75}{2.18}=3.1
\end{aligned}
$$

$$
h_{g}=.318 \frac{(0.1)^{2}}{644}=.0444 \text { feet }
$$

Resestances for eo"flife othere is fut one enve niwhich $\frac{r}{p}$ is ort, whan.l Weince cont 334 ure have formular $h=5 \frac{B^{\circ}}{180^{\circ}} \frac{v^{2}}{2 g}=151 \frac{p^{\circ}}{150^{\circ}} \frac{v^{2}}{8 g}$. dar. Nhircace $0=3,2$

155 Carve. $B=65^{\circ} \quad \frac{\beta}{180}=+361 \quad K_{4}=1961 \times 131 \frac{(90)^{2}}{64.4}=\quad .048291 \times \frac{(302)}{64.4} \mathrm{fed}$ 2nd $n \quad i=6.2^{\circ} \quad, \quad=29 \quad 12=131 ; 29.03799 \times .$.

$5 \frac{\text { th }}{n} \ldots \quad \because=17^{0} \quad,=.094 \quad 1_{8}=131.094 \ldots=\quad .012314 \times$.

$9 \frac{\text { at } . .}{\text { n }_{n}} \quad \ldots=25^{\circ} 90^{\circ}, \quad=.142 \quad h_{12}=131.142 \ldots=.0187 \times \cdots$

$y=.131+1.847 \times 00862=1469$
$+\quad K_{11}=.1469 .5-\frac{(9.09)^{2}}{644}$
$.07545-x \frac{3.09}{649}$ feet
Sargent friction. $12=1.01439+\frac{.017963)}{\sqrt{D}} \frac{1}{d} \frac{v^{2}}{a_{g}} \therefore h_{9}=\left(01439+\frac{.017969}{\sqrt{3.07}}\right) 1914 \frac{509}{64 \%}=5.895 \times \frac{9.09}{64.4}$ feet

$$
\therefore h=1_{1}+1_{2}+1_{3}+1_{4}+1_{5}+1_{6}+1_{7}+1_{4}+1_{7}+1_{10}+1_{11}^{1}+1_{12}+1_{13}=6.1744 \frac{9.1}{54.4}=1.15-64 \text { feet }=\text { oses }
$$

Dor value sighs $224 l$ b. area of valve exposed to preseure sulifressure for mot = head af.t9feet-lert. This added ta the above gieren for tat loss in mpiuard stroke of trechet $\quad k=2.618$ pent Downward strake of plunger
d fart of the waler passes through che hucketialve in le the uffuer ham her

She manainder fiasses chritigh the lower chamber, chence. Ctrrage h the fife conneting the uffuer and liver chanehins through a check valve thence eack side of the flumger and oul:

Do get ihe lisises for each weve finct-suffoseall of et lo feasis throigh the heckit and 2ned that ilall fiases etroush che conneding fivte. 1\% Sufforition.
Volime fer second
 4.048 or $=1.44$ feet

$$
T_{1}=4.048 \times \frac{(1.44)^{2}}{64.4}=1.180 .9418-6 \text { fat }
$$

End of flumger, taken ar case af abrupt contraction. Kamular area. $g=$ ection ptor
 $=.835: \quad 3=\left(\frac{1}{595}\right)^{2}-1=.804 \quad{ }_{1}=904\left(\frac{2.85)^{2}}{6441^{2}}=.038608\right.$ feet For entering the eo inch filke, eame as in afmearal thiche

 Again whole of the watr fiases araund so- ellow mean seation eir if fuet tor the same flace in ufurcind strahe squaled is $84 \quad v=9.7: 1$

$$
K_{3}=3 / 9 \frac{(3.4)^{2}}{3010}=.064416 \mathrm{fai}-
$$

Valve weigh 194 lhe. freseure fuer inch to sacise it-slels purmich. Shis is ignimalent to a head of

Solal loses by this sufifasition $\quad h=1,66$ foet

$$
h_{6}=1.1 \text { ful }
$$

2Nd Suffucistion.

$$
h_{1}=.569 \frac{1+0^{\circ}}{1+002 \frac{02}{2}}=.565 \frac{(15)^{2}}{640}=.01984 \mathrm{fuct}
$$

Second. Elbow 90° (dable page 434) $S=.984 \quad Q=1.33 \quad i_{2}=.904 \frac{(17)^{2}}{644^{2}}=.040176$ gat

 $h_{3}=1566 \frac{(19 y)^{2}}{44.4}=.0924$ feet
Howth. Paising arnund flumger Sameas finet inffenstion except different value of $\quad v=1,79 \quad \therefore h_{4}=9.27 \frac{(93)^{2}}{64 \%}=\ldots 430128^{\circ} \mathrm{fec}$
Lif the. Residluice in netaring 20 "ufte prom humek chamber. Same as in firet
 Sotal loes.. $\mathrm{H}=160$ feet
Then lose in second uffocitionite boes ni firct enfthowtions = quantiy going chrongh
 - Ariantily going thringh the aheok volve $=\frac{8.056}{3.48} 2.4 x=0.98$ cutheffer.

Ni now lake the value of ortained from $Q=5,7 s$ and subititucte in. the values for $h, h_{c} \dot{x} \dot{C}$ is second suffersition and get loses whick muel correfiond with those by che fird enfficution. Shen we have

$$
\begin{aligned}
& h_{2}=.984 \frac{(1,2)^{2}}{64.4}=.0227904 \\
& h_{3}=156 \frac{(1.22)^{2}}{64.4}=.0940340 \\
& h_{4}=9.24 \frac{(122)^{2}}{644^{4}}=21131370 \\
& t_{5}=9.18 \frac{(2.5)^{2}}{64.4}=0.3334 .00 \\
& h=3208292
\end{aligned}
$$

- Iotal loss in prump

Ler losses in the eovfufe tate the valuesof 3 from the eame case for the iflusard itrah anduee $t=3.7 \quad K=0.1774 \frac{3.0)^{2}}{644}=1.909$ fol

Add the lasses in pup and pifeave have $h=103$ feet This is the total loses for the down strake of the plunger

Flow from lower to upper pump. She water is drawn sit to this fume in the up ward stroke and forced out, and nite the bower tats, in down war stroke.

Quantity of water raised fur second is7904 cubic feet

$$
h_{1}=\left(.01439+\frac{017963}{\sqrt{3}}\right) \frac{44}{7} \frac{g^{2}}{\mathrm{gg}}=.004812 \text { fut }
$$

Aperture for stop valve. As the valve can be drain up out of che way, we. take the case as that of a diaftemame. (Sable page ii 44) $s=\left(\frac{p}{a s}-1\right)^{2}$?
 Then $s=\left(\frac{1267}{196 \times .651}-1\right)^{2}=3.5-$

$$
h_{2}=3.5-\frac{3^{2}}{64.4}=3.5 x_{1} 14=49 \text { fut }
$$

.595- ratio of orifice to fife ios $\frac{405+5,555}{2}=5=\frac{7}{P^{2}} \therefore 5=\left(\frac{1645}{.5}-1\right)=5.29 \quad 0=1.2$

$$
I_{5}=5.29 \frac{(1.2)^{2}}{64.4}=.117967
$$

Elbow. Defection 90° as before $3=.984 ; v=1.94 \quad h_{6}=984 \frac{(1.94)^{2}}{644^{2}}=.02755^{2}$ feat For fusing into the fume/ barrel we muel-cercuder half the water as flaming around the hollowfislon acting as a throttle. Section of passage may 28 sq. inches. Lection. of rode $=84$ sg inches. ratio $=.333$. When ha rietaptatak. from the table (6) page $44 \%, 5=11.47$ a get or take half the croseseatere of the chandler $=26$ toft. and 395.2 by it, we have v=1.5-2 fie

$$
t_{7}=11.44 \frac{(1.5-2)^{2}}{64.4}=.410626 \text { feet }
$$

 sectional area of 207 kg fat giving for $v=1.9$ feet. Then we before $s=904$.

$$
h_{9}=.984 \frac{(1.9)^{\circ}}{644}=.055104 \text { feed }
$$

$$
\text { Natal lose }=h=1.196 \text { feet }
$$

Downward stroke. In passing out of the prompt barrel the resistances are the same ut in the last husocase Hence

$$
\begin{aligned}
& h_{1}=.053104 f \text { fit } \\
& h_{2}=410626 .
\end{aligned}
$$

Stor the curve under the check eralue and for che checkevalve, the sauce ai far the
curve inder the fool vatue and for the foll walve: $h_{g}=0117$ ys- feel$h_{4}, 117964$..

Air chamber we may consicler the water as firsl- feascing an elliow of o o sthene as before $y=984 \quad u=1$ foot

$$
h_{s}=.981 \frac{(1)^{2}}{640}=.01525 \text { feet }
$$

Entering a rifiife (Atrt 326) $\mu_{n}=\mu_{g}\left(1+102 n+.067 n^{2}+.046 n^{9}\right) * s=\left(\frac{1}{2}\right)^{2}, \frac{5}{8}=\frac{226}{385}=n=.94$

$$
\begin{array}{r}
\mu_{9,11}=.815\left(1+.102 \times 342.067 \times(34)^{2}+.044(84)^{3}\right)=.85 \quad s=\left(\frac{1}{85}\right)^{2}-1=.383 ; 0=9 / 4 \mathrm{ct} \\
k_{6}=.38 \frac{(8)}{6)^{4}}=.983 \times .14=.05 .362
\end{array}
$$

Sre floining through the: seveen ind fife the matoris tfiond hy no eurve in which it is

sdi. $\quad n=52^{\circ} n=12 \quad n=29 \quad k_{q}=.01894 \times .29=0059184$

sti.. $\quad .=49.755^{\circ} .156 . \quad n=276 \quad h_{11}=.01834 \times .276=.00506184$
$6 \frac{4}{6}$.

$$
n=83^{\circ} \quad u=13^{\circ} \cdot u=, 46 \quad h_{12}=.0 \operatorname{sen} 4 \times 46=.00 \times 45474 .
$$

7需.

$$
u=1408^{\circ} n=4.1 \quad \mu=.47 \quad K_{i g}=.01804 x .47=.0086258
$$

Bangut friction. (atrf 330). $h=1.01499+\frac{017963)}{0 \%} / \frac{l}{2 g} \quad \frac{v^{2}}{d}=\frac{228 \times 12}{7}=390.9 \quad v=3$

$$
\begin{gathered}
1_{15}=\left(01439+\frac{.017963}{\sqrt{3}}\right) 890.9 \frac{(3)^{2}}{644^{4}}=2.05 \text { foet. } \\
1+h_{2}+\cdots \cdots+h_{15}=h=2.77 \text { fuet }
\end{gathered}
$$

Lodd on different pares
Blivation of surface of nates sie reservoir
". aquedect

$$
124
$$

Difference
Hoingt due bo low in ufuard s hoke of bucket
.": produaing fressure on buchet
99.018 ..

$$
49.06 \text { ld. }
$$

. Preseure fier inck or buckel-
otrea of bucket-arece of rod $=804.25-9.62 \mathrm{4g}$ miches $=794.69 \mathrm{gginahed}$

$$
\text { "plumper }=804.25-415: 48 . . . \ddot{ }=388.37 . . .
$$

Strain on the rod $=794.63 \times 43.06 l b=\quad=34114 \mathrm{dL}$
Water load on buchet $388.79 \times 49.06 \mathrm{Ch} . \quad=16740 \%$
Lioad ar Plunger.
In the dowmuard strote the frot walue closes. Ganerguenty ithe
the height through which the wales is cased equal the difference in elevation between the free surface of ivater in reservoir and chi middle of the fumof cylinaler.

Elevation of surface of water in reservoir =
." "middle offunif barrel
\therefore Difference
Height due to resistance
". producing pressure on the flinger
Pressure fur sq. inch
Sectional area of plunger

221 feet
$109 \quad$
1.69 ..
118.07 .
49.18 lob.

415:48 sqimathes.
Lead on

$$
415: 48 \times 49.13 \text { loo }=20917 \text { lb. }
$$

Load on piston of small puempoin upward stroke. In the upward stroke the felon only drauswater from the ufefier chanter of the main fuenft to the middle of the small finmfe cylinder

Difference is elevation of manifumpt chaveherandmide offoup ape is fut Height due to losses
producing fresare in fiaitore

Preseurefor inch on fiction
6.1 lb Effective area of fiction 40.8 eq inches Lad on fuiston
40.8×6.18

$$
=248.9 \text { lb }
$$

Downward stroke of piston.
Elevation of fire surface of water sin tanh
" middle of fimuft barrel
Difference

$$
208.2
$$

Height cure to losses
" frodiecing pressure
210.25
/reserve fur sq inch on piston
91. Clos.

Area of fir ion
40.8 sg inches

Load on ".
$40,8 \times 91=l$ las.
3413 lbs.

Load on cirpump piston. Sake it as only acting on the downland stroke, as the ainfuixp is single acting and has but ter throw the water out at it test in the ufurard stroke. Area of friction

Absurised pressure fer \& in th arining prom Atmioiphene is lbs.
bonsegrent increass of lead in downwandetrake $134 \times 1 \mathrm{lh}=1618 \mathrm{ed}$. Total Lead
upoward stroke.
Water load 16989 los.

Weight of recifervating farlsi assumed weight of waters ain airfunfe. 8900 ebo Solal

Downward stroke
Water load
atir frumpe lorad
1608 .
Solal

$$
25698
$$

Difference in faver of downisard lrohe 3.49 Cles.
Himmber of strakes fuer nincule: 27.42 or double etraked 13.96
Fozentain.
In comepucting the haikt to whick the fountain will strow wates we have accumed the forme of nossle for which weiebuch mache his farmenke It_{t} is slightly convergent (comiealf) and has its inner of entrane arifice runedid at the edges. Ne wiel suffrese it to f inch ì sliame its
and lenget 20 times che dianelor (Art- 325). $L=\left[1+S_{3}+1 s+5, \frac{h}{2}+\frac{s_{2}}{2} \frac{d^{4}}{d, 9}\right] \frac{0^{2}}{28}$ Lingeti of tangent in winch file 336 feet.

First curve $B=84 . \% \quad R=4$ feet
Second., $B=99^{\circ} 3^{\circ} \quad A=19^{.}$
Third. $B=17^{\circ} \quad R=18$.
Tourcte., $\beta=90^{\circ} \quad K=4 \ldots$
Difference in elevation between moult of jet and surface of under in taut -115 fut
 Assume 40 feet as the velvaity at outlet. Then in cinch fiche $v=1.111$ fut. From Art. $330 \quad 5=.01439+\frac{.014963}{\sqrt{v}}=.01439+\frac{.017963}{\sqrt{1.11}}=.03149 \cdot \frac{l}{d}=751, \quad \frac{l}{d}=23,649$
 Second $.131 \frac{99.3}{180}=.0693$ Shend. $131 \frac{17}{80}=.0125$. Fourth $.131 \frac{90}{180}=.065-55$

$$
\therefore 115=\left[1+.382(.815+29.649+.0612+.0693+.0125+.0655) \frac{1}{1296}\right] \frac{v^{2}}{2 g}=1.999 \frac{v^{2}}{644} \therefore v=74.0
$$

Eubditute this value in friction formula. $s=01439+\frac{.017963}{\sqrt{7966}}=.02626 \quad \$ \frac{l}{16}=20.17186$ From which we have $v=74.5$ feet $\quad \frac{v^{2}}{k g}=86.26 \mathrm{fect}=s=$ height in vacut Weight in air $=5, \Rightarrow(1-.00305 .9)$ feet $=5(1-.00305-\times 86.26)$ feet $=63.5 .5$ feet

Sirength of Pipes.

- The lest-for all the fiifus was a fresure of so0lls fur sginech intanior surface 30 incle Pipe.
cichual pressure due to whmen of water i4 feet iu height 10.32

Strain ufon inch in lengte of one side $=\frac{D}{2} \times P^{\prime}=\frac{30}{2} 10.32=154.50 \mathrm{Cb}$
Thichmes $=1 \frac{3}{16}$ inch Reustence to ouflive fursinche of metät $=15000$ Ch.
Resislence to rofeture of 1 inch in lughtte of hifee $=13150000=12183.5 \mathrm{Cb}$.
Modulus $=\frac{1218.7 .5}{154.8}$
$\therefore \quad 72.9$
"for the lest. $\begin{gathered}121875 \\ 45000\end{gathered}$
20 inech pije.
©hichnees \$an mich. Kesistence to rufeture of inch in fughth of side 11250 bhs
Strain frim test $\frac{p}{2} \cdot P=\frac{20}{2} 300=3000 \mathrm{Ch}$. Actual strain $\frac{20}{2} 49=1190$
Modulues oflest - 3.75 Mockelus of actual strain 23

Finch Pipe.
Shickiness \$/6 Resistance to rupture of ininch in eupte of side 84575 Ch .
Strain from leet $\frac{D}{2} \cdot P=\frac{2}{2} 300=1050$ Chs. Actral itrain $91 \times \frac{7}{2}=318$.
modulus of leer 8

- Modvelud of ackinal itraine $=26.5$

SUMMARY

Reservoir
Embankment In this computation the fuddle wasfind later and it moduli for eliffing and for overturning found to be, respectively, Moduli Slifiping 14.8 Operumang 14. ${ }^{-}$ Chen the earth embankment was considered with regard to electing but not for overturning as it well slide first.

Modulus
Drat against stiffing
Hs. 8 .
Gate Houses. The only portion taken here was the feartition wall between the ureter chamber and goats chamber of the effluent gate house. It consists of two fianallel brick walls filled in wilt concrete; as the concrete has no joint it will not isle. Siodielu for veverluxning, suffisang it not to be sefflorted at the ended is ils

Tower:
She whole treen was comiderred wilt regard to being turned
over about its hade meter the action of the morin laker al soldo fur square foot of vertical projection.

Modulus of safely $5: 4$
Roof and Tank Room wall. Its residence to limning over under the action of wind as in preceding case was taken and gave a modulus st Stability of coping. The taut room wall has ilceuler of gravely mierhanging. the face of the mural of' shaft a horisevilal distance of a inches of suffiort is the wright of the coping and the red f acting as a lie te prevent ils tole from falling outward. But its neoluleus aras ancula teal on the suffercition that the raf was taken off.

Modulus
Beams stiporting Tanks. Mme of the middle leaves having the lozgettsfian wrest taken and formulae trio nos tnoselyss hue k is afiflied in the colculahon. Modulus was found to the for the ufffer and dover flanges moduli. tItfer flange 4,3 Saurerflauge 5.7 Tank The button of the sniveled joint on one tide was taken arid fonsuta 123 lectures the incrdelue of safely mas formed to te is

Plowi of Water
From Aqueduct le Pump She quan lity to. be- raised by the fumeft in leu houss is aseumed to be e100000 gallons and that is to te the aclual requirement for the present.
thight-due to resistences
Upwand stroke of Bucket
Quntily te he liflect fur 10 hours 908860 galloms
Theight due to resistences in lifling 115\%" furLios from weigll of foot value
odding height lod from dimeduct to funy metraye 2.618

Doumwand stroke of Plunger
Qevantily to befforced upt in whours 1054yys gallow

Teight due to resisteciced
From laver co unper juminn
Quantily fuer 10 houre co6419 qullens
beiqlet due to revilunces 1176 furt

Downuard stroke of small pump.

Quantily fues 10 -hours
100418 galloms
Theight-dece to resistances
Loceds

Main Pump
Aor the buchat the liad has to he raciece through a heighty 19 feet
Presure furduced fuer oq uich m bucket 4sinella. Laad 16940 las.

Addimal load of reciferecaling finerts sao Sotal for Gucket25258.

Tor the plunger the lowal has to hef fercual io a heiglet.t 113 feel Preswire fier sq inch frodued. $48.13 . \mathrm{Cla}$ Siad

$$
.20317 \ldots
$$

Small Pumap
In uffruand trike the lonel has to de raied to heighty viss feel Prosiare foretuced for squieat of fuiston 6. 16

Load for ufewand t trake 245.9.CN.

Luad of mater from condencer 300

Load for downward etroke in raviecl through a height of. 21025.fiet Presure, fier squ inch, froduced

$$
91 \text { che }
$$

Water liadt 3413.

Atmenfheric lead from fungle acting as air fumup

Tital Lord.
upward Stroke
Dewnward :"
Difference

Alimber of double stroked 15.86

Pozentain.
Heright lowhich the mater is thrownin air: G35yfleet

Test. Alll the fufus suliected to bunsting fresure fun eq uich of soos lbo. $30^{\prime \prime}$ Pipe.

Modulue for lest

$$
2,4
$$

Service fressure

$$
y 2.8
$$

20" Pipe.
Modulus for lect
service fressure

$$
23
$$

ク" Pipe.
Mrdulus fir lest
" service presure

CONCLUSION

She offed of this thesis has not been to exhaust the sullied; fut to lake those parts fir comfuetativie which appeared to be most important, or ufo which defends the efficiency of the whole.

She order min which they are lateen eft is that in which the work firagresses.

Consequently we have eommeieced wick the reservoir.
In calculating the etrugth of the enebanknent it mas dinned unnecessary ito consider that feortions of eoneflact earth by ing withies. the fuddle as it is suffused to become saturated with water leet it : sere as a protection to the fueddde iii protecting it prone mach it is procted in turn, by the slope wall, both from wash accel from sliding inimerde when the wa ter is for any measondrawn from the resenvir. Without Chis, enthautiment the inontisuifin
cully string is is thomson in the summary.
In the gate houses all pressures from waler have a counter fired since from the same, except the fart considered which as is shown by the modulus (INs) and excepting the fifer which, as the pressure es vern slight, were considered furfectly safe..

Atliconneatid with the lower as far, as considered, may he taten as furfectly safe, except the coffining upon which rest the tauktrom walls and the roof. At though, this was laker in the most ungaurable condition, passible. Considered, as it would eland when conpleted and suffering, the pining a le to be ferfed, the mortar not. to oleterionale in time, it mould probably be sade. 'Rut as the fatter conditions are not altacieable, there should be come measures late... to increase its lability. This might be accomplished in various mays one of which would be to clamp the inner edge of che offing ty - Vies reaching ito the flour beans of tome of the Cover stores.

Ufion the nigine house no confutation have belle miracle. the a seen by the deserifelionof liars and a cmuptarion of theme with the
like farts of other structures irluck have keen calculated, they affiear yeurne by to be of sufficient etringit.

The confutation upon the funfoing engine have been only extaided. to the front of finding the wised upeve the farts and as sheri by the calculation es they are very nearly ballauced for the upend and denim ward strakes the loses appear surpriningly small where a casual glance is taken, bluet when me consider the small veloaty of the water it io not lo be wondered at. It is passible that some losses may arise frize the reciat ene of fropecting foils we for the calculation of which no formulae are given. Let, as there are not many such, it is reasonable lo suftiose such loses to be very small. We think froze the general arrareqenueut of the farts, that a calculation would, if, applied lo all afthene fervere the design of the cuquine lo be very salisfactory and its calla billily of doing much more work than at present requereal affects as unquestionable.

In ealarlating the ilvengete of files it appeased devisable: final discover. iffposible whether the lest of golds fer pinite
sould be lingle to ingiere the fifle or over stran cheus. Al isgen esally considired that if the strainito nol ver one half the actial strugtt of the irme, it will not ingure it and as shown by ithe colculations, the lisel- affilied lff a margin of more than itwe and they can never be untjectad to such a strain in, service for which thy are inlended if frofurly laid and calked

Sthe conifutatious uf on the fonu tain were more a matterafciuraasity than of utility. Athe sinch mossle assumed is che most favonble form for cteroiving usater. If a mumberaf emallenones should be used thy woubd not he afte ta brow inater so Kigh Lut hy malüg chainsligklly the jete would not meet quile as much. vesistence frome the air.

Ae none of the worth evinidered has yet bem sulficted to that mast sure, lust of alll the lestaf aetial service) we have mol, al fresent, the katisfuction of howning How nearly such act would confirmi the a Gever colculalions. But if the ixacitional the morl contiunes as well as it has thegon and as well as itis
designed il cannot fail to gine satifactione and to be such a conbination of ulility ared fine archilectural iffect as to make il me of the firel attracliuns of the cilly whichitruaten

SCALE: hFOQT I INCH

(t)

1
*2

